欧博官网手机版:MONOLITHIC MICRO LED DISPLAY

新2备用网址/2020-07-01/ 分类:科技/阅读:

Embodiments herein generally relate to micro displays which include (i) micro light emitting diodes (LEDs) on a wafer and (ii) electronic control circuits made of thin film transistors (TFTs) provided on the same wafer as the LEDs.

BACKGROUND

As consumer and industrial markets move towards augmented reality (AR) and virtual reality (VR) applications, there is a pressing need for a full color, high brightness, high contrast and low power micro displays (e.g., less than 1″ in size) suitable for wearable head mounted display (HMD) applications. Micro LED displays have many of these desired characteristics for HMD applications.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1a illustrates a layer sequence of the monolithic construction including micro LEDs and TFT electronic control circuit according to an embodiment.

FIG. 1b illustrates a top view of the monolithic construction including micro LEDs and TFT electronic control circuit according to an embodiment.

FIG. 2 illustrates a block diagram of the connection amongst driver circuits, TFT electronic control circuits, and micro LEDs according to an embodiment.

FIG. 3 illustrates a logic flow of a method for producing micro LEDs according to an embodiment.

FIGS. 4a-4h illustrate cross-sectional views of component layers at different stages of manufacturing a micro LED according to an embodiment.

FIGS. 5a-5h illustrate cross-sectional views of component layers at different stages of manufacturing a TFT of the TFT electronic control circuit provided on top of the micro LED layer according to an embodiment.

FIGS. 6a-6g illustrate cross-sectional views of component layers at different stages of manufacturing a TFT of the TFT electronic control circuit provided on top of the micro LED layer according to another embodiment.

FIG. 7 illustrates a logic flow of a TF-VLS method for forming InP channel layer of the TFT shown in FIG. 6e.

FIG. 8 illustrates a chart showing PPI versus micro LED size for different TFT sizes.

FIG. 9 illustrates a logic flow of a method for producing a TFT of the TFT electronic control circuit provided on top of the micro LED layer as illustrated in FIGS. 5a-5h.

FIG. 10 illustrates a logic flow of a method for producing a TFT of the TFT electronic control circuit provided on top of the micro LED layer as illustrated in FIGS. 6a-6g.

FIG. 11 illustrates a logic flow of a method for producing a micro display which includes micro LEDs on a wafer and TFT electronic control circuits provided on the same wafer.

FIG. 12 illustrates a computer-readable storage medium according to an embodiment.

FIG. 13 illustrates a system according to an embodiment.

DETAILED DESCRIPTION

Various embodiments may be generally directed to a micro display including LEDs and electronic control circuits. In particular, the present disclosure may be implemented to produce micro displays on silicon, silicon carbide, or sapphire wafers with electronic control circuits. Accordingly, such micro displays can be provided with such electronic control circuits on the same substrate. Thus it can be said that the such micro displays are monolithically formed (e.g., from the same substrate, or the like) with the electronic control circuits. The display may include red, green, and blue micro LEDs, for example, and electronic control circuits include TFTs with Indium gallium zinc oxide (IGZO) channels or Indium phosphide (InP) channels, for example, which LEDs and TFT electronic control circuits are manufactured monolithically on the same wafer.

In augmented reality, where the image is projected against the real world environment, high brightness (e.g., greater than 2,000 cd/m2) is desired to render data or images that can be viewed even in ambient lighting or when used with inefficient lenses or waveguides. Some additional desired characteristics for augmented reality applications are (i) a high contrast ratio so that the projected display area does not glow and become washed out relative to the surroundings, (ii) low power and a compact form factor which are important for head mounted displays, and (iii) high pixel densities, e.g., pixel density of >2500 pixel per inch (PPI) is required for head mounted displays. Micro LED displays have many of these desired characteristics for HMD applications.

FIG. 1a illustrates a layer sequence of the monolithic construction of a micro display 1000 including micro LEDs and electronic control circuits made of TFTs according to an embodiment. The micro display may be configured to achieve a pixel density of >3000 pixels per inch (PPI), for example, which pixel density may be desired for head-mounted displays. In addition, the micro display may be configured to achieve a pixel density of >4665 pixels per inch (PPI), for example, which pixel density may be desired for augmented reality (AR) devices. It is noted, that reference to the term micro display, for example, micro display 1000, as used herein does not preclude the present disclosure from being implemented with displays referred to as nano displays, or other such displays.

阅读:
广告 330*360
广告 330*360

热门文章

HOT NEWS
  • 周榜
  • 月榜
阳光在线官网
微信二维码扫一扫
关注微信公众号
新闻自媒体 Copyright © 2002-2019 阳光在线官网 版权所有
二维码
意见反馈 二维码